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Abstract

Dietary administration of cocoa flavanols may be an effective complementary strategy for alleviation or prevention of metabolic syndrome, particularly
glucose intolerance. The complex flavanol composition of cocoa provides the ability to interact with a variety of molecules, thus allowing numerous
opportunities to ameliorate metabolic diseases. These interactions likely occur primarily in the gastrointestinal tract, where native cocoa flavanol concentration is
high. Flavanols may antagonize digestive enzymes and glucose transporters, causing a reduction in glucose excursion, which helps patients with metabolic
disorders maintain glucose homeostasis. Unabsorbed flavanols, and ones that undergo enterohepatic recycling, will proceed to the colon where they can exert
prebiotic effects on the gut microbiota. Interactions with the gut microbiota may improve gut barrier function, resulting in attenuated endotoxin absorption.
Cocoa may also positively influence insulin signaling, possibly by relieving insulin-signaling pathways from oxidative stress and inflammation and/or via a
heightened incretin response. The purpose of this review is to explore the mechanisms that underlie these outcomes, critically review the current body of
literature related to those mechanisms, explore the implications of these mechanisms for therapeutic utility, and identify emerging or needed areas of research
that could advance our understanding of the mechanisms of action and therapeutic potential of cocoa flavanols.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Metabolic syndrome

Metabolic syndrome is a cluster of related conditions that increases
an individual's risk for developing cardiovascular disease and Type 2
diabetesmellitus (T2DM) [1,2]. The components ofmetabolic syndrome
include abdominal obesity, dyslipidemia, elevated blood pressure,
insulin resistance, glucose intolerance, β-cell loss, low-grade chronic
inflammation andaprothombotic state [1–3]. Theprevalenceof obesity,
cardiovascular disease and diabetes has been increasing in the United
States and worldwide for the past several decades. Approximately one
in ten adults in the United States has diabetes, one in three has a
cardiovascular disease and one in three is obese [4,5]. Many individuals
with metabolic syndrome will progress to the full expression of these
diseases. The prevalence of metabolic syndrome is now greater than
34% in theU.S. [6]. Increasingattentionhas beendirected towardfinding
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novel strategies to prevent, slow the onset and/or progression of and
potentially reverse metabolic syndrome [7].

1.2. Flavanols and metabolic syndrome

Dietary flavanols offer an interesting potential complementary
strategy thatmay improve this complex,multifaceted syndrome. First,
flavanolsmay help reduce glucose excursion by slowing digestion and
enhancing the incretin response. Second, flavanols may help reduce
systemic endotoxin exposure via improvement in gut barrier function.
While flavanols from a variety of dietary sources appear promising,
cocoa flavanols represent an emerging approach for intervention in
metabolic syndrome. Following an overview of polyphenols, this
reviewwill focus onflavanols found in cocoa. Cocoa bioavailabilitywill
be briefly reviewed, followed by a summary of the primary research
utilizing cocoa, and lastly, the hypothesized mechanisms by which
cocoa flavanols improve metabolic syndrome will be discussed.
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2. Cocoa flavanols

2.1. Flavanols

Polyphenols are secondary metabolites found ubiquitously in
plants. One prominent subclass of polyphenols is the flavonoids. The
basic flavonoid skeleton consists of two benzene rings linked by a 3
carbon heterocyclic (O-containing) ring (Fig. 1A). Flavonoids are
further divided into subclasses based on the nature of the heterocyclic
ring and substituents: flavanols, flavonols, flavones, flavanones,
isoflavones and anthocyanins [8]. Flavanols are hydroxylated at C3
in the heterocyclic ring (Fig. 1B) and are thus sometimes referred to as
flavan-3-ols. This hydroxyl group may be modified by an addition of a
gallate group. Flavanols may exist as monomers, or as oligomers/
polymers [with various degrees of polymerization (DP)] comprised of
flavanol monomer residues (known as proanthocyanidins). Major
dietary flavanol monomers include (+)-catechin (+C), (−)-catechin
(−C), (−)-epicatechin (EC) (Fig. 1C) and others. Cocoa is unique in
that it is the only significant dietary source of −C. Procyanidins (PCs,
as opposed to prodelphinidins) specifically refer to proanthocyanidins
with predominantly catechin and epicatechin monomer residues [9].
A representative cocoa procyanidin dimer is shown in Fig. 2. Although
largely beyond the scope of this review, PCsmay also contain either A-
or-B-type linkages [10]. Cocoa, the focus of this review, contains PCs
with B-type linkages.

2.2. Dietary sources of flavanols

Significant levels offlavanols are found in a variety of dietary plants
including tea, apples, grapes, cocoa, berries, plums, apricots and nuts
[9,11–13]. The flavanol content is higher in certain foods such as
grapes, tea and cocoa, compared to other plants, and thus the body of
literature focuses on these products. Cocoa is generally regarded as the
most concentrated dietary source of flavanols with the strongest
antioxidant potential [7,14].

Although many potentially bioactive compounds are found in
cocoa,many of the health benefits associatedwith its consumption are
likely due to its high flavanol content. Cocoa is composed of flavanol
monomers, oligomers, and polymers [15]. The most common
monomers found in cocoa are epicatechin (up to 35% of polyphenol
content) [16,17], as well as (±)-catechin. It is important to note that
cocoa is one of the few foods with appreciable levels of (−)-catechin,
which is produced by epimerization of (+)-catechin during fermen-
tation. Cocoa contains PCs composed of up to 12 monomeric residues
[18], although larger species likely exist but are not easilymeasured by
common chromatographic methods. There can be great variability in
cocoa phenol content from Theobroma cacao plants of different origins
[16] and the polyphenol content of cocoa powder is largely dependent
on processing methods.

The impacts of tea and grape seed on metabolic syndrome have
been extensively reviewed and analyzed [19–22]. Furthermore, there
is a large body of literature regarding the effects of cocoa on
cardiovascular disease [23–25]. However, the potential link between
cocoa and improvements to metabolic syndrome and, specifically,
glucose homeostasis and diabetes is a newer, less-studied area and
warrants further investigation and a review of the current literature.
Therefore, this review focuses specifically on the potential mecha-
nisms by which cocoa flavanols improve metabolic syndrome,
particularly glucose homeostasis and diabetes.

2.3. Bioavailability of cocoa flavanols

Understanding flavanol bioavailability is critical for identifying
flavanol bioactivities [13]. Bioavailability of cocoa flavanols from food
is a multistep process including digestion and release of flavanol from
its food matrix, solubilization and absorption into enterocytes,
xenobiotic metabolism in the enterocytes, liver and colon and, lastly,
elimination [26]. While an exhaustive discussion of flavanol bioavail-
ability is beyond the scope of this review, unique aspects of cocoa
flavanol bioavailability warrant mention as they pertain to
mechanism.

Potential PC instability during gastric transit has been suggested as
a factor limiting bioavailability of orally administered flavanols. PCs
could be hydrolyzed to form monomers (or partially hydrolyzed to
form monomers and smaller PCs) in the low pH conditions of gastric
juice. Spencer et al. [27] reported that PC oligomers (up to DP 6) were
degraded tomonomeric flavanol residueswhen incubated in an acidic
solution (pH~2.0) for up to 3.5 h. However, there are conflicting
reports on this phenomenon in both animals and humans [28–33].
Tsang et al. [30] found that polyphenols from grape seed extract
(catechin, epicatechin PC dimers, trimers and tetramers) were intact
in the GI tract after an oral gavage in Sprague–Dawley rats. They
concluded that there was neither a sizeable increase in monomers nor
a concomitant decrease in oligomers, suggesting that the oligomers
were stable through gastric transit [30]. Rios et al. [28] reported that
PCs were intact after being ingested with a meal in humans. After
participants drank a 500-ml cocoa beverage, the pH of the stomach
was elevated, keeping the cocoa powder protected from an extremely
acidic environment (such as the environment utilized in the study
conducted by Spencer et al. [27]). Further, the in vivo study showed
that the 500-ml beverage was emptied from the stomach in about
50 min, whereas the incubation study lasted up to 3.5 h [28].
Therefore, it appears that PCs, as well as monomeric flavanols, remain
intact during gastric transit. Some depolymerization may occur, but
the amount is so small that any increase in monomer concentration
would be negligible [9,30]. Therefore, gastric degradation is unlikely to
limit flavanol bioavailability and bioactivity.

Bioavailability is thought to reduce potential flavanol bioactivity in
vivo. Monomers (catechin and epicatechin) are relatively well
absorbed compared to PCs [28,34,35]. They first appear in the
circulation 30–60 min after ingestion [36] and reach peak plasma
concentrations at 2–3 h [28]. Epicatechin appears in greater concen-
trations in human plasma than catechin. Holt et al. [37] reported that
there is a preferential absorption of epicatechin. When catechin and
epicatechin were given to participants in equal concentrations, there
was 5.92-μM epicatechin but only 0.16-μM catechin in the plasma 2 h
after ingestion [37]. Furthermore, the (+)-catechin is more bioavail-
able than (−)-catechin, which predominates in fermented cocoa [38].
Dimeric, trimeric and tetrameric PCs are also absorbed in their intact
form but at a much lower rate compared to the monomers [9].
Interestingly, Deprez et al. [39] showed that (+)-catechin and PC
dimers and trimers had similar permeability coefficients as mannitol
(an indicator of paracellular transport) in Caco-2 monolayers. There-
fore, these smaller flavanols are likely entering the bloodstream via
paracellular diffusion [39,40]. Polymers larger than tetramers are
generally not absorbed intact [9] and proceed to the colon, along with
unabsorbed fractions of monomers and smaller PCs. Approximately 5–
10% of polyphenols can be absorbed in the small intestine while the
remaining 90–95% proceed to the colon [41]. Poor PC bioavailability
therefore is likely a main factor that limits bioactivity in peripheral
tissues, particularly for larger PCs. Their relatively low bioavailability
indicates that the gutmaybe theprimary location of action for cocoaPCs
due to the high concentrations present there compared to levels in
circulation [9,42]. Concentrations of flavanols in the blood and tissues
are typically less than 5 μM [37,43–45], which are at the lower end of
concentrations typically used in vitro to asses bioactivity in cell models
[46]. However, when the intestinal lumenor epithelial surface is the site
of action (such as inhibition of digestive enzymes or absorption
transporters, modulation of gut barrier integrity, etc.), bioavailability
is not a limiting factor.
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Fig. 1. The basic 3-ring flavonoid skeleton (A), the C3-hydroxylated flavanol skeleton (B) and structures of predominant flavanol monomers in cocoa (+) catechin, (−)-catechin and (−)-
epicatechin (C).
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Flavanols are degraded in the colon by the gut microbiota, and
some of the resulting metabolites can then be absorbed into the
circulation. The conversion of (+)-catechin to (+)-epicatechin is a
prerequisite step for microbial metabolism [47]. These monomers are
typically metabolized to form 5-(3′,4′-dihydroxyphenyl)-γ-valero-
lactone, 5-phenyl-γ-valerolactone and phenylpropionic acid [47]. The
majority of cocoa PCs are degraded into many metabolites, including
phenolic acids and phenylvalerolactones [9,18,48,49], and possibly
others that have not been identified. As PCs increase in size, the ability
of bacteria to metabolize them decreases [50]. Gonthier et al. [51]
found that the yield of phenolic acids from monomers and PC dimers
(10% and 7%) was much greater than those from PC trimers and
polymers (0.7% and 0.5%).

Microbial metabolites of flavanols should be considered as
potential contributors to the health effects of these compounds
observed following oral administration [41,52], as they are extensively
produced and comparativelymore bioavailable [53,54] than thenative
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Fig. 2. Representative structure of cocoa B-type procyanidins.
compounds themselves (particularly the PCs). Despite general
recognition that these microbial metabolites are likely to contribute
extensively to the activities observed during consumption of flavanols
(and polyphenols in general) [55–57], very little is known about the
bioactivities of these compounds. In terms of glucose homeostasis,
Fernandez-Millán et al. [58] showed that 3,4-dihydroxyphenylacetic
acid, 2,3-dihydroxybenzoic acid and 3-hydroxyphenylpropionic acid
potentially improve glucose-stimulated insulin secretion and resis-
tance to oxidative stress in β-cells and rat islets. Carrasco-Pozo et al.
[59] recently demonstrated that 3,4 dihydroxyphenylacetic acid
protected β-cells against impaired insulin secretion, mitochondrial
dysfunction and increased apoptosis induced by cholesterol. These
metabolites are also known to have antiinflammatory effects [52,60].
Therefore, these microbial metabolites appear to have significant
activities related to improving glucose homeostasis, but only a few of
the dozens of compounds have been investigated, and the impact of
these metabolites in most tissues critical to glucose homeostasis
remains unstudied. To the best of our knowledge, no published data
exist regarding the potential impacts of these metabolites on skeletal
muscle, adipose tissue or liver physiology and metabolism. In vitro
tissue culture experiments are needed in order to determine the
impacts of microbial metabolites on pathways related to glucose
homeostasis in these tissues.

The majority of research has focused on characterizing the
formation, bioavailability and pharmacokinetics of these metabolites.
Few studies have examined the activities of the microbial metabolites
directly, likely due to several reasons. First, not all microbial
metabolites are commercially available [49,61]. Second, in order to
test compounds that are not commercially available, in vitro or in vivo
fecal fermentations must be performed and the desired product(s)
extracted, isolated and purified from a complex mixture of several
dozen native and metabolite compounds and then characterized
analytically. The complexity, time, cost and low yields associated with
this process can be prohibitive. Third, some microbial metabolites are
highly transient [49], particularly the intermediate productswhich are
subsequently converted into smaller products. Thus, these compounds
are even more difficult to isolate. Fourth, the large number of
metabolites makes screening of these compounds for biological
activity laborious. Finally, in vivo testing of these compounds is
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difficult, as they are formed only in the lower gut. Therefore, studies
involving direct oral administration of these metabolites are prob-
lematic, as activities in the stomach and small intestine (as well as
absorption from those regions) are likely to be observed despite being
irrelevant to activities resulting from colonic formation of the
metabolites. One solution is to observe the activities of metabolites
by eliminating them: native flavanols could be fed to both normal
animals and either germ-free or antibiotic-fed animals, and the
differences in activities are likely associated with the microbial
metabolites. Due to this issue, in vitro cell culture studies are currently
themost promising and urgently needed aspect of understanding how
these metabolites contribute to the health benefits of flavanol
consumption. Specifically, studies are needed which examine the
activities in β-cells (insulin secretion, proliferation, apoptosis, resis-
tance to oxidative stress), intestinal L-cells (incretin hormone
secretion), hepatocytes (gluconeogenesis, lipid accumulation), skele-
tal muscle (insulin sensitivity, metabolic flexibility, mitochondrial
function, lipid accumulation) and adipocytes (differentiation, lipid
accumulation, hormone secretion). These activities may represent
major mechanisms by which orally consumed cocoa flavanols exert
their activities. Of all the mechanisms described in this review, this is
the least investigated area and the area in which relevant data are
most urgently needed. Therefore it is possible that the potential
activities of microbial metabolites are the area in which the greatest
advances in knowledge stand to be gained.

3. Animal and clinical studies

Prior to reviewingmechanisms of action, we summarize outcomes
of relevant animal and human studies to identify the impact of cocoa
and cocoa flavanols on metabolic syndrome.

3.1. Animal studies

Many animal studies have been conducted to examine whether
cocoa may reduce circulating endotoxin, oxidative stress and
inflammation and, thus, improve glucose control and other outcomes
related tometabolic syndrome. These studies are summarized in Table
1. The studies listed aremostly chronic studies, lasting anywhere from
1 to 18 weeks [62,63], and there were only two acute studies [64,65].
Many rodentmodelsmimicking diabetes or prediabeteswere utilized,
and many of the studies utilized high-fat diets. Many of these studies
reported improvements in glucose-related outcomes (fasting glucose
levels as well as glucose tolerance) [17,64,66–72], while three studies
reported no changes [63,73–75]. One study reported changes in gut
microbiome [76], and two studies reported attenuated endotoxin
levels [17,63].

When evaluating these studies, it is important to note the
experimental procedures by which cocoa was given to the animals.
There was a wide range of doses used as well as a variety of dosing
methods (discussed in more detail below). The dosing method may
impact the mechanisms by which cocoa flavanols act in vivo. Some
cocoa was available ad libitum by adding it into the chow or the
drinking water. In this case, flavanols were co-consumed with
macronutrients, thereby facilitating flavanol-mediated alteration of
nutrient digestion. This cocoa supplement was often reported as a
percentage of food (w/w) orwater (w/v). Other studies supplemented
the cocoa by means of an oral gavage, and these doses were often
reported as a dose in mg/kg body weight. Oral gavage is often done in
the fasted state, in which case flavanols would not be co-consumed
withmacronutrients, thereby precluding the opportunity for flavanol-
mediated alteration of nutrient digestion. While each procedure had
its advantages, it is important to note the differences between the two.
When cocoawas provided ad libitum, the dosewas dependent on food
intake, which was sometimes not reported. Cocoa is extremely bitter,
and high percentages of cocoa may have been unpalatable and
therefore led to a reduced food intake, possibly contributing to the
observed positive outcomes. This is a potentialmechanism of action in
animal studies that is not likely translatable to humans. Further,
studies comparing high-fat diets to normal diets (each with cocoa
supplements) [69] had significantly different food intakes, meaning
different doses of cocoa were being ingested. Studies comparing
normal animals to diabetic animals [66,67] also had the same
dilemma. In studies using diabetic rats, there were also significant
differences in food intake, where the diabetic animals ate more and
therefore were consuming more polyphenols.

Another aspect of study design to consider when evaluating the
effective dose and potentially bioactive constituents of cocoa is the
different types of cocoa product utilized. Animal studies have used
cocoa liquor (liquefied cocoa mass), chocolate (cocoa liquor + sugar
and possibly other ingredients), cocoa powder (cocoa liquor with
most of the cocoa butter removed), cocoa extracts (prepared by
distinct extraction procedures, containing various profiles of phenolic
acids, flavanols, etc.) and pure compounds (catechins, epicatechin,
etc.). These all have different amounts of fiber, lipids and polyphenols,
all of which may possess beneficial activities that may have
synergistic, or even antagonistic, effects with flavanols. While the
majority of studies show efficacy, these confounding components
make interpretation of the effective dose problematic. These non-
flavanol components may act by mechanisms distinct from the
flavanols. On the other hand, purified compounds alone are not
representative of the complexity of cocoa products. While most
studies showsomeefficacy of these various cocoaproducts, studies are
still needed to isolate the activities of individual components. For
example, the effect of flavanols versus nonflavanol components could
be elucidated by comparing the impact of cocoa versus an equivalent
dose of heavily Dutched cocoa. Furthermore, cocoa could be
deconstructed by sequentially extracted cocoa lipids (with hexane)
and then flavanols (with acetone:water:acetic acid), leaving fiber and
other insoluble components. The various fractions could then be
compared against whole cocoa, or cocoa minus specific components,
to elucidate the role of each component. When evaluating the
potential translational benefits to humans, it should be understood
that humans generally consume chocolate, cocoa powder and cocoa
liquor (in solid form) and generally do not consume cocoa extracts or
pure compounds (although cocoa extracts or products with added
cocoa extracts can be obtained in supplement form).

In summary, animal studies of the impacts of cocoa, chocolate,
cocoa extracts or cocoa monomers on metabolic syndrome have been
highly descriptive. These studies have suggested potential mecha-
nisms but do not definitively isolate or interrogate the proposed
mechanisms.

3.2. Clinical studies

There have been a variety of clinical trials assessing the effects of
habitual cocoa intake on glycemic and insulinemic outcomes. These
are summarized in Table 2. Many of the studies found cocoa to be
beneficial for glucose control [77–83]. Cocoa treatments were often
provided in the form of chocolate bars [78–82] or beverages [83–87].
Chronic studies lasted from 5 days to 3 months [83,86,87], but most
lasted about 2 weeks.

In select studies, cocoa and cocoa flavanols improved insulin
sensitivity and reduced blood glucose, insulin, and HbA1c in subjects
with varying degrees of glucose homeostasis (normoglycemic,
prediabetic or T2DM) within 2–4 weeks [78–83,85,88]. However,
other studies showed no effect [84,86,89,90]. Despite its promising
effects in vitro and in animal models, only five chronic studies of cocoa
and glucose control have been performed in subjects with prediabetes
or diabetes [78,80,81,86,89], as the majority of studies were focused



Table 1
Animal studies related to the effects of dietary cocoa or cocoa flavanols on metabolic outcomes

Author, year Animal model Treatment/Delivery Animal dose
(mg/kg body weight)

Human
equivalent dosea

(mg/day)

Acute/Chronic
design, diet

Cocoa treatment
outcomes

Matsui, 2005 [225] Male Wistar rats 12.5% (w/w) cocoa
powder, in food

7,040b 79,913c Chronic, 3 weeks,
high-fat diet

↓final body weights,
↓fatty acid synthesis

Ruzaidi, 2005 [66] Male diabetic
Wistar rats,
(STZd induced)

1, 2, 3% (w/w)
cocoa extracte,
in food

Diabetic rats f:
1% = 868
2% = 1,776
3% = 2,580
Normal Rats:
1% = 433
2% = 860
3% = 1,200

Diabetic rats:
1% = 9,853
2% = 20,160
3% = 29,286
Normal rats:
1% = 4,919
2% = 9,762
3% = 13,622

Chronic, 4 weeks,
normal diet

↓glycemia,
↓hypercholesteremia

Tomaru, 2007 [67] Female, db/db
mice (obese, diabetic)

0.5%, 1.0% (w/w) cacao liquor
proanthocyanidin, in food

0.5% = 1,107g

1.0% = 2,044
0.5% = 5,771
1.0% = 11,602

Chronic, 3 weeks,
normal diet

↓blood glucose in a
dose dependent
manner

Jalil, 2008 [158] Male ob/db Sprague–Dawley
rats (STZ induced)

Cocoa extract,
by oral gavage

600 6,811 Chronic, 4 weeks,
high-fat diet

↓oxidative stress
(8-isopostane)

Jalil, 2009 [68] Male ob/db Sprague–Dawley
rats (STZ induced)

Cocoa extract,
by oral gavage

600 6,811 Chronic, 4 weeks,
high-fat diet.

↑ glucose tolerance
(OGTT- AUC), ↓total
cholesterol,
↓triglycerides.
No changes in insulin
sensitivity

Perez-Berezo,
2011 [242]

Female Wistar rats 2%, 5%, or 10% (w/w) cocoa
powder, in food

Unknown (food intake
data not reported).

Unknown (food intake
data not reported).

Chronic, 3 weeks,
normal diet

↓ immune response
(IgG1, IgG2, S-IgA)
(5 and 10% treatments)

Si, 2011 [73] Male db/dbmice 0.25% epicatechin,
in drinking water

150 851 Chronic, 15 weeks,
normal diet.

↓inflammatory markers
(CRP, IL1B), oxidative
stress (GSH, SOD),
↑ lifespan. no change
in glycemia

Massot-Cladera,
2012 [76]

Female Wistar rats 10% (w/w) cocoa powderh,
in food

Unknown (food intake
data not reported).

Unknown
(food intake data
not reported).

Chronic, 6 weeks,
normal diet.

Altered gut microbiome
(↓Bacteroides,
Staphylococcus,
Clostridium)

Yamashita,
2012 [243]

Male C57BL/6 mice 0.5, 2.0% (w/w) cacao
liquor procyanidinsi, in food

Normal diet j:
0.5% = 588
2.0% = 2,344
High-fat diet:
0.5% = 310
2.0% = 1,532

Normal diet:
0.5% = 3,337
2.0% = 13,304
High-fat diet:
0.5% = 1,759
2.0% = 8,695

Chronic, 13 weeks,
control or high-fat diet

↓fasting glucose
(2.0% treatment);
↑glucose tolerance
(OGTT AUC).
↑translocation
of GLUT4, AMPK
phosphorylation, UCP
expression

Yamashita,
2012 [62]

Male C57BL/6 mice 0.5%, 1% (w/w) cocoa liquor
procyanidins, in food

Unknown (food intake
data not reported).

Unknown (food intake
data not reported).

Chronic, 1 week,
normal diet

↑glucose tolerance in
a dose dependent
manner (OGTT-AUC)

Yamashita,
2012 [62]

Male ICRkmice Cocoa liquor procyanidins,
by oral gavage

50 or 250 283 or 1,418 Acute ↑glucose tolerance
(OGTT-AUC)
(250-mg/kg dose)

de Oliveira,
2013 [74]

Male Wistar STZ-induced
diabetic rats

Cocoa liquorl,
by oral gavage

3,600 or 7,200 1,157 or 2,317 Chronic, 40 days,
normal diet

↑ antioxidant capacity
(ORAC, FRAP), no
change in blood
glucose levels

Yamashita,
2013 [64]

Male ICR mice Procyanidins, by oral gavage 0.01 0.06 Acute ↑plasma insulin;
↑ GLP-1 levels

Dorenkott,
2014 [17]

Male C57L/l6 mice Monomeric, oligomeric
and polymeric cocoa
extract fractions, in food

25 142 Chronic, 12 weeks,
high-fat diet

Oligomeric fraction
↓ fasting blood
glucose, ↑glucose
tolerance; ↑ insulin
tolerance (OGTT);
↓endotoxin

Gu, 2014 [75] High fat-fed obese
male C57BL/6 J mice

8% (w/w) cocoa
powder, in food

11,828m 67,135 Chronic, 10 weeks,
high-fat diet

↓weight gain,
↑fecal lipid content,
↑insulin sensitivity
(HOMA-IR),
↓inflammatory
markers (IL-6,MCP-1),
no change in blood
glucose

Gu, 2014 [63] Male C57BL/6 J mice 8% (w/w) cocoa
powder, in food

4,998n 28,367 Chronic, 18 weeks,
high-fat diet

↓inflammation
(adipose tissue
NF-κB expression),
↑insulin sensitivity

(continued on next page)
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Table 1 (continued)

Author, year Animal model Treatment/Delivery Animal dose
(mg/kg body weight)

Human
equivalent dosea

(mg/day)

Acute/Chronic
design, diet

Cocoa treatment
outcomes

(HOMA-IR), ↑gut barrier
function (plasma GLP-2),
↓plasma endotoxin

Gutierrez-Salmean,
2014 [190]

High fat-fed, obese,
male Wistar rats

(−)-epicatechin, by gavage 1 11 Chronic, 2 weeks, low
fat or high-fat diet

↓blood glucose,
↓ triglyceride levels,
↑mitochondrial function
(TFAM, mitofilin expression)

Gutierrez-Salmean,
2014 [72]

Male Wistar rats (−)-epicatechin, by gavage 1 11 Chronic, 2 weeks,
low fat or high-fat diet

↓fasting glucose;
↑glucose tolerance.

Matsumura,
2014 [65]

Male ICR mice Flavanol fraction or
(−)-epicatechin, by gavage

10 57 Acute Flavanol fraction
↑energy expenditure
(REE), ↑blood catecholamines

Osakabe, 2014 [3] Male Wistar rats 0.2% (w/w) flavanols, in food 78 890 Chronic, 4 weeks,
high-fat diet

↓thermogenesis, ↓lipolysis

Papadimitrou,
2014 [227]

Male SHRo rats, diabetic
(STZ induced)

Cocoa powder,
by gavage

24 272 Chronic, 16 weeks,
normal diet

AMPK, ↓NOX4 signaling

Watanabe,
2014 [70]

Male C57BL/J mice Cocoa flavanolsp

by gavage
50 284 Chronic, 2 weeks,

normal diet
↓plasma glucose.
↓resting energy
requirements,
mitogenesis

Fernandez- Millan,
2015 [71]

Male Zucker
diabetic fatty rat

10% (w/w) cocoa
powder, in food

8,311q 94,345 Chronic, 9 weeks,
normal diet

Prevented B cell
mass loss, ↑glucose
tolerance (OGTT)
insulin sensitivity
(HOMA-IR), ↑β cell
function (HOMA-B),
↓oxidative stress
(carbonyl groups, TBARs)

Human equivalent doses were calculated by the equation provided by Reagan-Shaw et al. [241] using food intake and body weight data, if provided. Assumptions made for calculation
are indicated in the footnotes.

a Based on a 70 kg human.
b Used reported final body weight to calculate animal and human equivalent doses.
c Author reported 50,000 mg/70 kg/day human equivalent dose.
d Streptozotocin.
e 285.6 mg polyphenols/g extract.
f Assumed body weights of rats were 0.30 kg for normal rats and 0.25 kg for diabetic rats, based on reported body weights, to calculate animal and human equivalent doses.
g Average food intake and body weights during weeks 4–6 were used to calculate animal and human equivalent doses.
h Cocoa powder contains 10.62-mg/g polyphenols.
i Cocoa liquor procyanidin contained 69.8% polyphenols.
j Based on body weights at the end of the experiment and total food intake averaged over the entire experiment.
k Institute of Cancer Research/Imprinting Control Region mouse.
l Total phenolics 2845-mg/100 g dry weight.
m Based on average weight at the start of the experiment (0.020 kg mouse) and does not account for weight gained during the experiment, since final weights not provided (only

displayed in graph).
n Based on average final weights (0.0471-kg mouse).
o Spontaneously hypertensive rat.
p Flavanol fraction was 72.4% w/w total polyphenols.
q Based on final weight (0.2335-kg rat) and average food intake (19-g food/day) over 10 weeks.
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on cardiovascular or cardio-metabolic outcomes [78–81,87]. In terms
of diabetes biomarkers, most of these studies focused on insulin
resistance/sensitivity; few focused on overall blood glucose control
[81,89], which is a critical clinical outcome. Furthermore, only two of
these five studies in prediabetic or diabetic subjects studies lasted N15
d [81,89]. Neither of these two longer studies examined prediabetes
(both used subjects with existing T1/2DM) [81,89]. Therefore, the
potential for cocoa to improve long-term glucose control has not been
sufficiently studied. Additional studies lasting 1–3 months (or
potentially longer) are needed. Furthermore, the potential impact of
cocoa in individuals with prediabetes has not yet been evaluated.
Clinical trials in individuals with prediabetes are thus needed in order
to determine the potential utility of cocoa for improvement of long-
termblood glucose control and prevention of T2DM in this population,
where early prevention may significantly reduce or delay progression
to T2DM. Furthermore, additional studies are needed in individuals
with T2DM in order to evaluate the potential for cocoa to ameliorate
T2DM and slow progression to β-cell exhaustion and failure.
Interestingly, no significant glycemic improvements were ob-
served in the two studies that utilized epicatechin only [87,89]. This
supports the idea that the larger PCs may be important, despite their
relatively low bioavailability [17]. However, these studies [87,89] only
examined patients with prediabetes or T2DM, so health status may be
an important mediator for interventions with epicatechin; these
interventions may be more effective in healthier individuals.

Overall, the existing clinical trials support the premise that cocoa
can improve glycemic outcomes in healthy, overweight or hyperten-
sive adults. While many of these findings seem promising, these
studies do not provide insight into the mechanisms responsible.

Furthermore, many of these studies (and the selected primary
outcomes) were related to cardiovascular disease (generally hyper-
tension), not glucose homeostasis/diabetes. Further, as stated above,
there have been no long-term studies examining the effects of cocoa
consumption in an at-risk (prediabetic) population, and only 5 studies
in individuals with diabetes (4 examined T2DM, while one study did
not specify whether subjects were diagnosed with T1 or T2DM) [81].



Table 2
Clinical trials assessing the effect of dietary cocoa on metabolic outcomes, in chronological order

Author, year Subjects Health status Treatment (daily dose) Acute/Chronic
(duration)

Outcomes

Nguyen, 1994 [244] N=10 Healthy 100-g chocolate bar, (45-g cocoa) Acute Lesser but prolonged increase
in glucose and insulin.

BrandMiller, 2003 [77] N=10 Healthy 6 food pairs, one flavored with cocoaa Acute ↑insulin response (insulin index)
but not glycemic differences with
chocolate flavored products.

Basu, 2015 [88] N=14 Obese, Type 2 diabetic Cocoa beverage (960-mg
polyphenols, 480-mg flavanolsb)

Acute ↑ postprandial insulin secretion,
no improvements in blood glucose or
insulin resistance (except 4-h postmeal)

Grassi, 2005 [78] N=15 Healthy 100-g chocolate bar,
(500-mg polyphenols)

Chronic (15 days),
crossover design

↑insulin sensitivity (HOMA-IR,
QUICKI), ↑glucose tolerance (OGTT).

Grassi, 2005 [79] N=20 Hypertensive 100-g chocolate bar,
(88-mg flavanolsc)

Chronic (15 days),
crossover design

↑insulin sensitivity
(HOMA-IR, QUICKI, ISI).

Muniyappa, 2008 [84] N=20 Hypertensive 150-ml beverage, 2×/day.
(900-mg flavanolsd)

Chronic (2 weeks),
crossover design

No effects on insulin sensitivity
(QUICKI and clamp).

Grassi, 2008 [80] N=19 Hypertensive, impaired
glucose tolerance

100-g chocolate bar,
(1008-mg phenols)

Chronic (15 days),
crossover design

↑insulin sensitivity (HOMA-IR, QUICKI, SI),
↑β cell function.

Davison, 2008 [83] N=49 Overweight and obese
(BMIN25 kg/m2)

150-ml cocoa beverage
(2×/day), high flavanol (902 mg)
and low flavanol (36 mg)

Chronic (12 weeks),
randomized arm

↑insulin sensitivity (HOMA2-IR)
at 6 and 12 weeks.

Mellor, 2010 [89] N=12 Type 2 diabetic 45-g chocolate (3 bars/day),
(16.6-mg epicatechine)

Chronic (8 weeks),
crossover design

No change in glycemic control
(HOMA-IR, HbA1c, fasting glucose).
↑HDL cholesterol.

Almoosawi, 2012 [82] N=42 Healthy (BMIb25 kg/m2)
compared to overweight
(BMIN25 kg/m2)

20-g dark chocolate,
(500-mg polyphenols)

Chronic (4 weeks),
crossover design

Treatment prevented unfavorable
changes in insulin sensitivity
(QUICKI, HOMA-IR) seen in
the placebo treatment.

Desideri, 2012 [85] N=90 Mild cognitive impairment Cocoa beverage, (990-mg, 520-mg
or 45-mg flavanols).

Chronic (8 weeks),
randomized arm

High flavanol and intermediate
flavanol treatments ↓fasting glucose,
↑insulin sensitivity (HOMA-IR) but not
fasting insulin compared to the
low flavanol group.

Stote, 2012 [86] N=19 Adults at risk for insulin resistance Cocoa beverage (2×/day),
(30-, 180-, 400- or 900-mg flavanols)

Chronic (5 days),
crossover design

No effects on glycemia (OGTT) or
insulinemia (HOMA, QUICKI, ISI)

Stellingwerff, 2013
[90]

N=16 Trained cyclists Dark chocolate,
(240-mg polyphenols f)

Acute, crossover
design

↑ Blood glucose and ↑insulin

Haghighat, 2013 [81]
(abstract only)

N=69 Hypertensive diabetic adults 25-g dark chocolate,
(450-mg polyphenols)

Chronic (8 weeks),
randomized arm

↓Fasting glucose, ↓HbA1c

Ramirez-Sanchez,
2013 [87]

N=5 T2D/Stage II and Stage III
heart failure patients
(compared with healthy controls)

18-g cocoa powder in a beverage
(2×/day), (100-mg epicatechin)

Chronic (3 months),
parallel arm

No effects on glycemia/insulinemia.
↓oxidative stress in mitochondria.

a Foods used include Coco Pops (Kellogg's cereal), Betty Crocker chocolate fudge supermoist cake and creamydeluxe Dark fudge frosting. Plain chocolate block (classic full creammilk
chocolate from Nestle), Ultra chocolate classic ice cream from Sara Lee and chocolate instant pudding (White Wings Foods).

b Placebo contained 110-mg polyphenols, b0.1-mg flavanols.
c Consists of the flavanols: catechin, epicatechin, quercetin, kaempferol and isorhamnetin.
d Placebo contained 14-mg flavanols.
e Placebo contained b2-mg epicatechin.
f Polyphenols included epicatechin, catechin, procyanidin B2, procyanidin B5, trimer C and tetramer D.
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Additional studies of the mechanisms specifically related to glucose
homeostasis in these populations are greatly neededmoving forward.

As with reported animal studies, human clinical studies of cocoa or
chocolate have been largely descriptive. While it is considerably more
difficult to perform elegant mechanistic studies in humans due to
feasibility or ethical concerns, opportunities to move toward mech-
anistic studies in humans will be discussed later in this review.

4. Potential molecular mechanisms of action

There are numerous potential primary molecular mechanisms by
which cocoa flavanols appear to prevent or ameliorate metabolic
syndrome. It is critical to clearly define the primary molecular
mechanism of action and differentiate it from downstream effects.
The primary molecular mechanism of action is the initial biological
effect caused directly by the bioactive compound of interest. In other
words, the primary molecular mechanism of action is the most
“upstream” activity induced by the compound of interest that results
in the observed effects. The primary molecular mechanism of action
may then have numerous downstream consequences in various
pathways. As discussed below, most research on cocoa flavanols and
other dietary bioactive compounds in animals or humans (including
studies from our lab [17,91]) has been primarily “descriptive” in
nature: a compound or food is administered, and biomarkers or
outcomes are observed. These descriptive studies demonstrate the
effects of the intervention and suggest, but do not definitively identify,
primary molecular mechanisms of action by which these effects are
achieved [92]. Such studies are extremely valuable for hypothesis
generation regarding the primary molecular mechanism of action.
However, mechanism-oriented research (beyond measuring bio-
markers of disease) is needed to isolate and identify the primary
molecular mechanisms of action [93–97]. One additional limitation of
descriptive studies is that the relationship between observed effects
typically remains unclear. Dietary interventions may result in
modulation of several pathways or systems that all likely contribute
to improvements to glucose homeostasis. However, the order inwhich
these improvements occur, the importance of each observed effect in
the overall improvement in glucose homeostasis and the degree to
which pathways influence one another are often not clear in
descriptive studies. To elucidate primary molecular mechanisms,
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studies that isolate and probe specific molecular interactions and
biological pathways (such as knockout or “knock-in” mouse models,
use of receptor agonists/antagonists, use of pathway inhibitors in cell
assays, gene silencing by siRNA, etc.) are needed.

Caution should be used when interpreting descriptive biomarker
studies in search of primary mechanism, as many different primary
molecular mechanisms can have similar effects, and each unique
primarymolecularmechanism can have pleiotropic effects. Numerous
studies have demonstrated the positive effects of cocoa and cocoa
flavanols, including improved glucose homeostasis, body composition
andothers. However, the key initial events in the cascades of biological
processes regulating these outcomes remain to be identified. Several
possibilities include inhibition of digestive enzymes, inhibition of
glucose transporters, reducedmetabolic endotoxemia and stimulation
of the incretin response. Possible mechanisms are illustrated in Fig. 3.
In all probability, flavanols act through various mechanisms simulta-
neously. The most well-studied and promising potential mechanisms
and their implications will be reviewed here.

4.1. Carbohydrate digestion

Perhaps the most direct mechanisms by which flavanols may
improve glucose homeostasis is by slowing carbohydrate digestion
and absorption in the gut, as explained below.

4.1.1. Glucose homeostasis
One component of metabolic syndrome is derangement of glucose

homeostasis, resulting in hyperglycemia and glucose intolerance.
Glucose levels are primarily controlled by the hormones insulin and
glucagon. These two hormones are under tight regulation in order to
maintain blood glucose levels between 4 and 7 mM in normal
individuals (glucose homeostasis) [98,99]. Failure to maintain glucose
homeostasis can lead to a wide variety of conditions, including
adiposity, dyslipidemia, vascular damage, vision loss, kidney disease,
neuropathy, atherosclerosis and myocardial infarction [100,101].
When the insulin signaling pathway is impaired, as for example due
to chronic inflammation [1], a cyclical effect occurs where blood
glucose levels become elevated and β-cells are constantly stimulated.
Fig. 3. Hypothetical mechanisms by which cocoa flavanols may affect carbohydrate digesti
inhibiting glucose transporters SGLT1 and GLUT2, promoting GLP-1 secretion and inhibiting D
This causes β-cells to deteriorate and lose their ability to produce
insulin, leading to prediabetes, T2DM and then frank diabetes with β-
cell failure. Inadequate insulin secretion can then lead to hyperglyce-
mia and ketoacidosis.

4.1.2. Inhibition of digestive enzymes
Cocoa can slow the rate and extent of macronutrient digestion by

noncovalently binding to and antagonizing digestive enzymes. The
complex ring structure with abundant hydroxyl groups allows cocoa
to bind to proteins, particularly digestive enzymes. Cocoa flavanols
interact with digestive enzymes by a variety of primary inhibition
mechanisms [102].

Cocoa may inhibit α-amylase [36], an enzyme that breaks down
starch into glucose oligomers. There is evidence to suggest that
polyphenols bind to this enzyme, reducing its activity [103]. Yilmazer-
Musa et al. [103] found that grape seed extract (GSE) (including
catechin, epicatechin and PCs)with 86% total phenolics byweight was
just as efficient as the drug acarbose at inhibitingα-amylase. Acarbose,
the positive control, had a median inhibitory concentration (IC50) of
6.9 μg/ml compared to GSE with an IC50 of 8.7 μg/ml. On the other
hand, white tea, which contains predominantly monomeric flavanols
and only 34% total phenolics by weight, had an IC50 of 378 μg/ml.
While total flavanol concentration plays a role in the observed IC50

values, it also appears that themore complex the structure, the greater
its ability to inhibit digestive enzymes. Thus, flavanols may reduce
digestion of starches, thereby lowering glucose absorption via
inhibiting this enzyme in the diabetic population. Interestingly, α-
amylase expression is higher in individuals with T2DM than healthy
individuals [46,104].

Glucosidase inhibitors arewell studied and commercially available,
but unwanted side effects such as diarrhea, gas and cramping have
been reported for these drugs [103,105]. Acarbose is one such
synthetic glucosidase inhibitor. Acarbose has reportedly been effective
in reducing weight gain and comorbidities related to metabolic
syndrome, such as diabetes and cardiovascular disease [46]. Flavanols
may also inhibit α-glucosidase, which cleaves small oligosaccharides
at the 1,4 linked alpha glucose residues, resulting inmonomeric sugars
that are ready for absorption. This is another key enzyme involved in
on. Mechanisms include inhibiting digestive enzymes α-amylase and α-glucosidase,
PP-4.
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carbohydrate digestion. When these enzymes are inhibited, the
breakdown of carbohydrates is slowed, resulting in an attenuated
elevation of blood glucose after a meal [106]. Yamashita et al. [62]
found that a 0.01% cocoa liquor procyanidin extract inhibited α-
glucosidase activity in vitro; however, this result was not observed in
an in vivo model using 250-mg/kg cocoa liquor PCs. In the study
conducted by Yilmazer-Musa et al. [103], acarbose also inhibited α-
glucosidase, but the IC50 values were 13 times lower compared to
acarbose's inhibitory effect on a-amylase. Notably, both GSE (IC50=
1.2 μg/ml) and white tea extract (IC50=2.5 μg/ml) were more potent
α-glucosidase inhibitors than acarbose (IC50=90 μg/ml).

The structure offlavanols affects the affinity towhich they can bind
to these proteins. A study by Barrett et al. [106] compared flavanols
from grape, cranberry, pomegranate and cocoa to determine howwell
each can inhibit α-amylase. It should be noted that the cocoa used in
this study primarily consisted ofmonomers and dimers, a composition
that may not be reflective of most cocoa powders. It was found that all
compounds had an effect, but cocoa flavanols (containing the smallest
mean degree of polymerization used in the experiment) had the least
inhibitory effect on either enzyme. More complex polyphenols, such
as ones found in cranberries and pomegranates, were more successful
at inhibiting the breakdown of carbohydrates [106]. Andujar and Gu
state that the greater the degree of polymerization, the more potently
the polyphenol can inhibit digestive enzymes [16,36]. In addition, a
study conducted by Gu et al. [36] found that cocoa potently inhibits
pancreatic amylase, pancreatic lipase and phospholipase A2. This
group also examined the effects of processing methods on inhibitory
capability. They found that the least processed cocoa, termed lavado
(an unfermented cocoa which has the greatest concentration and
largest cocoa PCs), had the strongest inhibitory effect on these
pancreatic enzymes. Inhibition of lipases will be reviewed in Section
4.6.

It has been established that cocoa flavanols can inhibit digestive
enzymes, but the extent to which this inhibition affects postprandial
glucose excursions is unclear. It is also unclear if these effects are
observable in vivo. Reducing rapid increases in blood glucose after a
meal is important for patients with metabolic disorders, since it helps
them maintain glucose homeostasis. Cocoa flavanols may be as
effective at inhibiting digestive enzymes as some pharmaceuticals
and therefore deserve further consideration.

4.1.3. Inhibition of glucose transporters
Cocoa polyphenols not only inhibit certain digestive enzymes, but

theymay also inhibit glucose transporters. Similar to digestive enzyme
inhibition, the primary molecular mechanism of action may be
nonspecific flavanol–protein interactions or competitive inhibition
at the transport active site. Inhibiting glucose transporters in the
intestine could attenuate glucose excursion after a meal. Intestinal
transporters that may be inhibited include glucose transporter 2
(GLUT2) and sodium/glucose cotransporter 1 (SGLT1) [107,108].

GLUT2 is found on both the apical and basolateral surfaces of
enterocytes. GLUT2 vesicles store the transporters within the cell and
fuse with the cell membrane and facilitate transport of glucose
(similar to insulin-stimulated GLUT4) upon increased glucose load. In
diabetic patients, the control of this vesicle is lost, and increased
amounts of GLUT2 transporters are always found on the cell surface,
contributing to elevated blood glucose levels. Kwon et al. [107] found
that in vitro GLUT2-mediated glucose transport was inhibited by
quercetin (IC50=12.7 μM), but not by epicatechin (no inhibition) or
catechins (no inhibition). Further studies examining the effects of PCs
with varying degrees of polymerization are necessary to understand
whether or not inhibition of transporters occurs in response to cocoa
consumption.

SGLT1 is a Na+/glucose cotransporter, which permanently resides
on the apical membrane of intestinal epithelial cells. T2DM patients
exhibit increased expression of SGLT1 compared to healthy individ-
uals, leading to decreased glucose control [46]. Monomeric (+)-
catechin (0.5 mM) inhibited SGLT1 in a competitive mechanism in an
in vitro study using Xenopus oocytes [108]. Polyphenols found in tea
[(−)-epicatechin gallate and (−)-epigallocatechin gallate] also
inhibited expression of SGLT1. The extent to which cocoa flavanols
with large degrees of polymerization can inhibit this transporter is
unknown.

Flavanol metabolites that reach circulation may exert an
inhibitory effect on glucose transporters in peripheral tissues.
However, the concentration of metabolites in circulation is relatively
low (b3–5 μM) and is fleeting [37,43–45,107]. Therefore, given the
low bioavailability of cocoa flavanols and short half-lives of flavanol
metabolites, inhibition of glucose transporters is likely a mechanism
occurring exclusively in the gut. Again, this mechanism would be
helpful for patients with metabolic disorders because it may reduce
rapid glucose excursions after a meal, therefore promoting glucose
homeostasis.

4.2. Hormonal response to meals

Cocoaflavanols also appear tomodulate the secretion and activities
of hormones critical for maintenance of glucose homeostasis, as
explained below.

4.2.1. Stimulating the incretin response
The incretin responsemay be a keymechanismenhanced by cocoa.

Incretins (GLP-1, GIP) are secreted from enteroendocrine cells after a
meal. One of the roles of these hormones is to stimulate insulin
secretion for glucose disposal [109]. Incretin hormones have other
effects on the pancreas, including increasing somatostatin secretion,
decreasing glucagon secretion and stimulating β-cell growth and
neogenesis. Incretin hormones are not limited to stimulating the
pancreas; incretin receptors are found inmany tissues throughout the
body, including the brain, liver, adipose and skeletal muscle. Other
incretin functions include suppressing appetite, delaying gastric
emptying and increasing glycogen synthesis [110,111]. The incretin
response is impaired in noninsulin T2DM, possibly due to a lack of
incretin secretion [110,112]. The incretin response is greatly reduced
when a glucose load is administered intraperitoneally compared to an
oral glucose load [113]. This suggests that the gut is an important
location for interventions targeting incretin levels and, therefore, an
interesting potential target for cocoa flavanols with poor bioavailabil-
ity. It is possible that cocoa may enhance the incretin response by
either stimulating incretin release or extending the half-life of incretin
hormones.

4.2.2. Incretin hormones
The incretin hormone glucagon-like peptide 1 (GLP-1) is released

fromepithelial endocrine L-cells found in the distal small intestine and
colon. In response to either glucose or a mixed meal, proglucagon is
cleaved andGLP-1 is released into the circulation [109]. The half-life of
GLP-1 is about 2 min. GLP-1 exerts biological actions via its receptors,
which are foundon isletα- andβ-cells in the pancreas, in the brain and
on vagal afferents [110,114]. GLP-1 receptor agonists have been
developed (i.e., Liraglutide, NovoNordisk) and promoteweight loss by
suppressing hunger, reducing the duration of eating and delaying
gastric emptying [114,115].

Gonzalez-Albuin et al. [116,117] showed an increase in GLP-1
concentration in healthy rats fed an oral glucose load (2 g/kg bw)
40 min after oral gavage of grape seedprocyanidin extract (1 g/kg bw)
compared to control. The increased concentration was not signifi-
cantly different from the positive control treatment, 1-mg/kg bw of
Vildagliptin (a DDP-4 inhibitor). Yamashita et al. [64] also demon-
strated increased GLP-1 secretion in mice 60 min after oral gavage of
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10-μg/kg bw Cinnamtannin A2, a tetrameric cocoa procyanidin. This
study was novel because it was performed in the absence of any
macronutrients. Not only did it increase GLP-1 secretion, but insulin
secretion and insulin action [measured by phosphorylation of insulin
receptor substrate 1 (IRS-1) and insulin receptor (IRβ)] was increased
as well [64]. However, the impact of cocoa flavanols on incretin
response in the presence of glucose is not yet known.

Gastric inhibitory peptide (also referred to as glucose-dependent
insulinotropic polypeptide) (GIP) is secreted from K cells in the
proximal small intestine. The release of GIP is stimulated by the
presence of nutrients, primarily fats, in the small intestine [118]. The in
vivo half-life of GIP is approximately 5–7 min. When studying this
peptide, it is important to distinguish between the cleaved, non-
insulinotropic metabolite [GIP (3–42)] versus the active hormone [GIP
(1–42)] [118]. Gonzalez-Abuin et al. [117] found that GIP concentra-
tionwas significantly reduced after a gavage of grapeseed procyanidin
extract (1 g/kg bw) prior to an oral glucose load (2 g/kg bw). This
response was similar to that of the positive control, Vildagliptin.
However, clinical studies using solely pharmaceuticals (i.e. sitagliptin)
find that GIP concentration and area under the curve typically
increases in healthy, nondiabetic males [119]. It is unclear why GLP-
1 and GIP seem to respond differently in response to grape seed PCs.
This is an area that warrants additional investigation, as research on
flavanols has focused on GLP-1.

The primary molecular mechanism by which cocoa flavanols
stimulate GLP-1 and GIP secretion likely occurs in the secretory cells
but remains unknown. It seems likely that consumption of cocoa
polyphenols stimulates the release of GLP-1, but the effects of cocoa on
GIP are less understood. It would be interesting to utilize a GLP-1
receptor knock-out model to see if cocoa can stimulate an incretin
response via GIP. Further, a double incretin receptor knock-out
(DIRKO) model could be used to assess if an incretin response is an
importantmechanismutilized by cocoa to reduce glucose excursion in
an acute fashion. Stimulating an incretin response is beneficial for
patients with metabolic disorders because it assists in glucose
disposal, slows gastric emptying and reduces appetite.

4.2.3. DPP-4
Dipeptidyl peptidase IV (DPP-4) cleaves the penultimate proline or

alanine residue in proteins [120,121]. It is a transmembrane
glycoprotein [122] found in nearly all human tissues and fluids
[120]. Two DPP-4 targets are GLP-1 and GIP [109,118,121]. These
hormones are cleaved, and therefore inactivated, by DPP-4 almost
immediately after they are secreted from their respective endocrine
cells; consequently, the incretin hormones have short half-lives. DPP-
4 levels in patients with Type 2 diabetes, impaired glucose tolerance
and/or obesity are not different than normal controls [123,124]. DPP-4
inhibitors have been considered potential treatments for T2DM
because extending the active lifespan of these hormones could
prolong the beneficial effects that incretin hormones have on glucose
control [120]. Indeed, DPP-4 inhibition has been shown to improve
glycemic outcomes in diabetic models and delay the onset of diabetes
in Zucker diabetic fatty rats [125]. DPP-4 inhibitor drugs (commonly
named gliptins) mimic many of the same actions as GLP-1 receptor
agonists (stimulating insulin secretion, inhibiting glucagon secretion,
etc.) but they do not exhibit the same improvements in weight loss
[110]. This is likely because the resulting increase in incretin hormones
is much less compared to activating the GLP-1 receptor directly [110].
Gliptins are currently employed as a second-line therapy for T2DM
poorly controlled by metformin alone [126–128].

It appears that inhibition of DPP-4 may be another primary
molecular mechanism of action of cocoa flavanols. Gonzalez-Albuin et
al. [120] examined the effects of grape seed procyandin extract on
DPP-4 using severalmethods. First, they determined that the extract is
able to achieve 70% inhibition of commercial DPP-4 at the highest dose
reported, 200 mg/L. Next, using cultured Caco-2 cell epithelial
monolayers, they found that 100 mg/L of grape seed extract incubated
for 3 days resulted in 20% inhibition of DPP-4 (shorter incubation
periods did not show significant changes in inhibition). This was
associated with a significant reduction in DPP-4 gene expression, as
well. The same group examined the effects of grape seed extract on
DPP-4 in in vivomodels [116,117]. They found that an acute grape seed
extract (1 g/kg bw) inhibits intestinal DPP-4 activity [117].

Ultimately, it appears thatwhile plasmaDPP-4 inhibition is possible,
it is likely not the main mechanism that would result in improved
glucose homeostasis [120]; gut DPP-4 inhibition is a more plausible
mechanism. DPP-4 inhibition has not been studied using cocoa extract
or cocoa powder and remains an area in need of further investigation.

4.3. Metabolic endotoxemia and inflammation

Endotoxin, or lipopolysaccharide (LPS), is derived from the outer
membrane of Gram-negative (−) bacteria. If the bacteria lyse, LPS can
separate from themembrane and, if gut barrier function is poor, the LPS
can enter the circulation via paracellular diffusion and activate
proinflammatory pathways through molecular pattern recognition
receptors in systemic circulation and in tissues. Several factors appear
to modulate the concentration of LPS in circulation, including the gut
microbial environment, high-fat diet and intestinal permeability [129].
Chronic, low-grade, inflammation may contribute to the pathogenesis
of obesity andmetabolic syndrome. Circulating endotoxin binds to toll-
like receptor 4 (TLR4), a molecular pattern recognition receptor, and
initiates an inflammatory response [129]. This chronic, endotoxin-
derived inflammation can disrupt energy homeostasis and insulin
signaling, leading to elevated blood glucose levels (Fig. 4). If the bacteria
lyse, LPS can separate from themembrane, and if gut barrier function is
poor, the LPS can enter the circulation via paracellular diffusion.

Recent evidence has suggested that cocoa flavanols can aid in the
attenuation of this metabolic endotoxemia [17,63]; however, the
underlyingmechanisms are less explored. These changes are primarily
attributed to the chronic consumption of cocoa. Possible intermediate
mechanisms responsible for this effect of cocoa are modulation of the
gut microbiome composition and function, improvements of the gut
barrier function and improved insulin signaling.

4.3.1. Gut microbiota
Recently, the gut microbiome has become a very popular field of

research. While once considered a “black box,” the commensal
microbial communities of the human gastrointestinal tract are now
known to be diverse and complex and to have significant impacts on
human health. It is believed that one's diet plays a large role in the
development andmaintenance of themicrobial community [129,130].
Further, links have been drawn between the composition of one's
microbiome and their likelihood to present with obesity or metabolic
disease [130]. Certain species are associatedwith harvesting nutrients
and producing short-chain fatty acids, improving the mucosa in the
colon and improving gut barrier function, among many other
outcomes [131,132]. It is possible that cocoa may modulate levels
and activities of certain species in the gut microbiome, although the
primarymechanisms of action bywhich this is achieved remain poorly
understood. Mechanistic studies are needed to understand the
molecular interactions between flavanols and commensal bacteria,
both on an individual cell and community level.

A large proportion of cocoa flavanols proceed to the colon where
they interact with the gut microbiota. As discussed previously, the gut
microbiota metabolize polyphenols. However, polyphenols also
modulate the gut microbiome and exert prebiotic effects. A prebiotic
is defined as a “non-digestible food ingredient that beneficially affects
the host by selectively stimulating the growth and/or activity of one or
a limited number of bacteria in the colon, and thus improves host



Fig. 4. Suggested mechanism by which increased gut permeability and endotoxin levels lead to insulin resistance.
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health” [133]. While prebiotics are commonly thought to be
indigestible carbohydrates that are fermented by gut microbiota,
flavanols can also fulfill this definition. Cocoa flavanols have shown
prebiotic activity in vitro [47], in rodents [76] and in humans [134].

Tzounis et al. [47] found that incubation of (+)-catechin with fecal
samples from healthy volunteers significantly increased the growth of
Clostridium coccoides-Eubacterium rectale group, Bifidobacterium spp.
and Escherichia coli, as well as a significant inhibitory effect on the
growth of the Clostridium histolyticum group. A rodent study showed
decreases in Bacteroides, Staphylococcus and Clostridium genera after a
6-week cocoa treatment (100-g cocoa/kg chow) compared to a
reference group; this study utilized healthy animals and a normal
chow diet [76]. It is important to note that the dietary fiber in cocoa
could potentially elicitmany of these observed benefits, and this study's
control group did not have matched soluble fiber content. Cocoa
flavanolswere also found tomodulate human gutmicrobiota. After a 4-
week cocoa treatment (494-mg flavanols/day), healthy volunteers had
an increase in Bifidobacterium and Lactobacillus, and a decrease in
Clostrum compared to a low flavanol treatment (29 mg flavanols/day)
group [134]. Both treatments had equal amounts of dietary fiber.

It is evident that cocoa can exert prebiotic effects in both animals
andhumans and improve gut barrier function. Both of these properties
would be beneficial for patients with metabolic disorders. However,
more research is necessary to understand if cocoa can exert prebiotic
effects in an unhealthy or at-risk population and to what degree the
naturally occurring fiber found in cocoa powder affects these results.

4.3.2. Tight junction proteins
The purpose of tight junction proteins is to ensure the integrity of

epithelial tissues and act as a barrier to limit paracellular diffusion of
water, ions and other molecules. Occludin, claudin and junction
adhesion molecules (JAM) are important proteins found in tight
junctions between epithelial cells [135]. The transmembrane proteins
occludin and claudin attach to actin filaments within the cell via
intracellular plaque proteins, such as zonula occludens (ZO) [136].

Gut barrier function is important for human health. A high-fat diet
[129], alcohol [137] and exercise [138] can increase gut permeability.
Certain diseases such as Crohn's disease, inflammatory bowel disease
and Celiac's disease are associated with compromised integrity of the
gut barrier [139]. In the perspective of metabolic syndrome and
metabolic endotoxemia, a leaky gut allows endotoxin to enter the
circulation via paracellular diffusion. Systemic endotoxin causes an
inflammatory response that can disrupt insulin signaling and
contribute to atherosclerosis and obesity [140]. Therefore, improving
gut barrier function is an important target for preventing and/or
resolving metabolic endotoxemia.

There has been evidence that the gut microbiome can affect gut
barrier integrity [141]. The mucus layer in the GI tract is important for
gut health [142], and certain bacterial species, such as Akkermansia,
reside in this layer [143]. Increasedmucus production by goblet cells is
a prime environment for mucus-eating bacterium, such as Akker-
mansia, which has been shown to protect againstmetabolic syndrome
[131]. Everard et al. [143] showed that Akkermansia is beneficial to gut
barrier function and normalizes metabolic endotoxemia. This species
also improved glucose tolerance and decreased hepatic glucose
production in mice with diet-induced obesity [143]. Interestingly,
Akkermansia is a Gram (−) bacterium.

It is unclear if cocoa flavanols can increase Akkermansia popula-
tions, but flavanols have been shown to improve gut barrier function
[91,144]. While the mechanism by which this occurs remains
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unknown, this protective effect against gut permeability and therefore
inflammation could be themechanism for health-promoting effects of
cocoa flavanols. This is a very intriguing research area that should be
further explored.

There has been limited evidence to suggest that flavanol
consumption has been correlatedwith improvements in tight junction
protein expression and gut permeability. Goodrich et al. [91] found
that 0.1% GSE in drinking water (100 mg/kg/day) increased occludin
expression in the proximal colon in healthy rats compared to the
control group. Another group found that GSE in a standard chow diet
(250 mg/kg/day) increased ZO-1 and occludin expression and
decreased intestinal permeability in the small intestine in healthy
rats [144].

The primary molecular mechanisms behind the increased expres-
sion of tight junction proteins are unclear, but it may be related to
prebiotic-induced changes in gut microbiota. In addition, flavanols
may interact directly with the epithelium to induce these changes.
Future research is needed to determine if cocoa can protect against
derangements in gut barrier function and inflammation caused by a
high-fat diet and if these changes are associated with bacterial species
such as Akkermansia.

4.3.3. Endotoxin-derived inflammation
LPS is theprimary ligand for TLR4,which is foundon the cell surface

of immune cells, skeletal muscle and many other tissues [145]. LPS
binding to TLR4 initiates an inflammatory cascade that leads to nuclear
translocation of nuclear factor kappa B (NF-κB), resulting in
production of inflammatory cytokines [145]. Poor gut barrier function
will lead to elevated plasma endotoxin levels and metabolic disease
[129]. Endotoxin-induced inflammation has been shown to disrupt
energy homeostasis associated with metabolic syndrome [146].
Inflammation can hinder the normal processes of many tissues,
including skeletal muscle, liver, adipose, brain, pancreas and the
endothelium of arteries. Inflammation can also disrupt insulin and
leptin signaling; both of these hormones are involved with percep-
tions of satiety and fuel handling [147].

Several studies have explored the effects of cocoa on inflammation
and its contribution to diseases [73,75,86,148]. There are also studies
investigating the effects of cocoa onmetabolic endotoxemia [17,75]. A
study conducted by Gu et al. [63] examined the effects of an 18-week
cocoa treatment (8% w/w cocoa powder in a high-fat diet) in male
mice on cytokine and endotoxin levels. It was found that the cocoa
treatment was effective in reducing plasma LPS, TNFα and IL-6
compared to the control high-fat diet group. This study also showed
that the cocoa treatment improved gut barrier function, resulting in
40.8% lower plasma endotoxin levels compared to the high-fat diet
group. Dorenkott et al. [17] also saw reductions in serum endotoxin
levels, along with improvements in glycemic outcomes, in a similar
study using a lower dose (25-mg/kg bw of cocoa extract monomeric
and oligomeric fractions) for 12 weeks. Both studies utilized a C57Bl/6
mouse model on a high-fat diet.

Overall, cocoa and other flavanols have the potential to improve
gut barrier function, which may, in turn, alleviate metabolic
endotoxemia. Further research is needed to confirm these results,
and a clinical study is warranted. It is unknown if reduced
endotoxemia is due solely to alterations to gut microbiota and barrier
function, or if flavanols can directly bind and inactivate LPS in the gut
or blood, or modulate LPS-TLR4 binding and downstream signaling at
the levels of skeletal muscle cells.

4.4. β-cells

Deterioration of functional β-cell mass is observed during T2DM
andmetabolic syndrome disease progression. Functional β-cell mass is
definedas theβ-cell insulin secretion rate, and the totalβ-cellmass is a
factor of cellular proliferation and cellular death [149]. Decreased
functional β-cell mass critically impinges on the ability to maintain
normoglycemia. There are various studies that suggest that cocoa
polyphenols may protect β-cells against death-inducing damaging
factors, enhance glucose stimulated insulin secretion and induceβ-cell
replication. The primary molecular interactions by which flavanols
induce improved β-cell function, proliferation and survival remain
unknown and, therefore, warrant investigation.

T2DM and other metabolic diseases are associated with chronic,
low-grade inflammation and excess reactive oxygen species, which can
damage β-cells, thereby further exacerbating metabolic instability.
Individualswithmetabolic disorders can also presentwith a decrease in
antioxidant potential (i.e., glutathione levels), so a dietary antioxidant
may be beneficial for the health of these patients. Cocoa polyphenols
have antioxidantproperties andmayhelp protectβ-cells fromoxidative
damage. Further, Martín et al. [150] showed that cocoa flavanols
protected against oxidative stress in INS-1 cells, a rat insulin-secreting
cell line. Similarly, Youl et al. [151] demonstrated that quercetin (which
has also been found in cocoa [152] although not a flavanol) is able to
protect INS-1 cells from oxidative damage, supporting the findings that
cocoa flavanols protect against oxidative stress. Most recently, in a
rodent model using Zucker diabetic fatty rats, a 9-week treatment with
cocoa-enriched diet (10% (w/w) cocoa powder) prevented β-cell
apoptosis by reducing oxidative stress [71]. These data are supported
by studies showing that quercetin prevents streptozotocin-induced
oxidative stress and damage [153,154]. These data strongly demon-
strate that in animal models of β-cell destruction, there is appreciable
protection given to the β-cell mass from flavanol compounds, in
particular from cocoa. However, it is unclear if the cocoa flavanols act as
reducing agents in the gut (possibly on acrylamide), in the circulation or
in the pancreas directly. Further studies are needed to identify the exact
location that these antioxidant effects are taking place in an in vivo
model and at doses more comparable to human intake.

Cocoa may exert protective effects on β-cells by inhibiting lipid
accumulation in the cells. While peripheral insulin resistance is
common during obesity and aging in mice and people, its progression
to T2DM is largely due to insulin secretory dysfunction and significant
apoptosis of functional β-cells. Accumulating evidence suggests that
chronic hyperlipidemia (lipotoxicity) causes β-cell apoptosis and
impairs its function, thereby contributing to the pathogenesis of T2DM
[155]. In a study with cafeteria-fed rats, treatment with grape seed
procyanidin extract for 30 days significantly reduced triglyceride
levels in the pancreas, resulting in improved insulin secretion [156].
Further studies are needed to examine the impacts of cocoa flavanols
with differing degrees of PCs on β-cell health and function.

Cocoa flavanols, in particular epicatechins, have been shown to
enhance glucose-stimulated insulin secretion [88]. Early studies
demonstrated that epicatechins are sufficient to increase insulin
secretion from rat islets [157]. More recent studies using ob/ob rats fed
cocoa extracts demonstrated that in addition to decreasing oxidative
stress, the treatment enhanced insulin secretion [158]. Using
quercetin treatment of INS-1 cells, it was shown that the flavonol-
mediated potentiation of insulin secretion was dependent on MEK-
regulated phosphorylation of Erk1/2 [151]. These data clearly
demonstrated that the flavonols, and similar compounds such as
flavanols, were able to protect against oxidative stress and enhance
insulin secretion. Preliminary studies suggest that similar effects are
seen in human populations; consumption of high polyphenol dark
chocolate for a 15-day period increased the 2-h corrected insulin
response, which suggests improved β-cell function in these individ-
uals [80]. Taken together, these data suggest that cocoa flavanols have
the capacity to enhance glucose-stimulated insulin secretion and
thereby enhance functional β-cell mass.

Finally, a number of studies have demonstrated that cocoa-derived
compounds can induce β-cell proliferation. β-cell proliferation is a
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highly regulated process, and in the majority of individuals, less than
1% of β-cells can be measured replicating after adolescence [159].
Therefore, compounds and factors that enhance proliferation would
have a direct therapeutic effect with patients suffering from T2DM or
metabolic syndrome. Early studies demonstrated enhanced DNA
replication and regeneration of β-cells when rats were treated with
epicatechins [160–162]. Studies using quercetin (aflavonol, also found
in cocoa) in the STZ-treated rat diabetes model demonstrated
maintenance of β-cell mass, which could indicate decreased cell
death or enhanced proliferation [153,154]. These data were validated
in the NOD (nonobese diabetic) T1DM model where epicatechin
treatment increased β-cell mass [163]. Finally, rats fed a cocoa-rich
diet had increased small islet size and maintenance of total islet mass,
suggesting induction of β-cell proliferation [71]. Taken together, these
data demonstrate that cocoa flavanols have beneficial effects on β-
cells: enhanced survival, insulin secretion and proliferation. The
molecularmechanismsbywhich these effects are induced are yet to be
elucidated.

4.5. Insulin signaling

It is increasingly recognized that chronic inflammation is associ-
atedwith defective insulin signaling and insulin resistance. It has been
shown that proinflammatory molecules inhibit the insulin-signaling
pathway. For example, tumor necrosis factor-alpha (TNF-α) can
induce the phosphorylation of the serine residues on IRS-1, which
subsequently inhibits tyrosine auto-phosphorylation of the insulin
receptor [164], thereby impairing glucose disposal. Chronic hypergly-
cemia is toxic to pancreatic β-cells, causing impairments in insulin
secretion and cell apoptosis, therefore further exacerbating elevated
glucose levels.

Cordero-Herrera et al. [165,166] studied the effects of epicatechin
and cocoa extract at physiologically relevant doses on insulin-
signaling mechanisms in HepG2 cells. Both treatments successfully
enhanced the activities of IR, IRS-1, IRS-2, PI3K/AKT pathway and
AMPK. However, it is unclear if the Phase-II and/or colonicmetabolites
would produce the same effects as the native polyphenols. Future
studies may want to examine these outcomes with conjugated
metabolites of epicatechin and other flavanols, since the metabolites
would be most prevalent in circulation compared to native flavanols.

Yamashita et al. [62] showed that cocoa liquor extract provoked
the translocation of GLUT4 to the plasma membrane in absence of
insulin in L6 myotubes. This is an interesting finding for several
reasons. Individualswith T2DMhave a bluntedGLUT4 translocation in
response to insulin, despite the fact that they typically have normal
amounts of GLUT4 expression in skeletal muscle [19,23,167]. If cocoa
can promote the translocation of GLUT4, glucose disposal will be
enhanced and blood glucose levels will normalize. Since this is an
insulin-independent mechanism, this is especially useful for diabetic
patients who may have deficits in insulin production. Future studies
are warranted to see if these outcomes are reproducible in vivo.

Cocoa polyphenol extract was shown to inhibit insulin receptor
kinase by direct binding, resulting in reduced lipid accumulation and
differentiation in preadipocytes in vitro [168]. This is thought to be one
mechanism by which cocoa flavanols may inhibit the onset of obesity.

In conclusion, cocoa may modulate insulin signaling in several
ways. First, a heightened incretin response, discussed in Section 4.2.2,
will promote insulin secretion. Second, if cocoa can improve gut
barrier function, it will lend to a reduction in LPS and chronic
inflammation, resulting in improved insulin signaling. Third, cocoa
flavanols reduce insulin resistance by both insulin-dependent and
insulin-independent mechanisms (including activation of the insulin-
signaling cascade in the absence of insulin). Glucose intolerance and
insulin resistance are characteristic of metabolic syndrome. Dietary
components aiding in either insulin secretion or insulin action would
prove beneficial for patients with metabolic syndrome. However, the
cellular mechanisms by which cocoa flavanols achieve these effects in
glucose-disposing tissues remain unknown. Further research with
pathway inhibitors, overexpression and gene-silencing experiments is
needed to move beyond identification of up-regulated/stimulated
pathways and pinpoint the mechanistic targets that produce those
effects (such as AMPK signaling, CAMK signaling, PI3K/Akt signaling,
etc.). This, in turn, will enable therapeutic targeting of those primary
mechanisms. In summary, potential mechanisms by which cocoa
flavanols may improve glucose homeostasis are shown in Fig. 5.
4.6. Other potential mechanisms

The mechanisms addressed in this review are only a portion of the
proposed mechanisms that are reported in the literature. Other
mechanisms by which cocoa may affect health outcomes are
important to acknowledge in order to fully understand the potential
effects that cocoa flavanols may have on glucose homeostasis.

This includes an antioxidant potential of cocoaflavanols that can be
very beneficial to cardiovascular health and has been extensively
studied and reviewed elsewhere [169]. Cocoa can impact nitric oxide
production, endothelial function and, ultimately, atherosclerosis.
Cardiovascular health is an important facet of metabolic syndrome
and must not be overlooked when developing drugs or designing
studies to alleviate or assess this metabolic disorder.

Oxidative stress is present in obesity and metabolic syndrome.
Reactive oxygen species can accumulate inmetabolically active tissues
and cause lipid peroxidation, damage β-cells, modulate the gut
microbiota and hinder cardiovascular function, insulin signaling and
mitochondrial function. Flavanols may protect against the effects of
oxidative stress [28].

Gu et al. [75] suggests that inflammation can be reduced by cocoa
flavanols via reducing lipid absorption. Along with the digestive
enzymes already discussed, flavanols also inhibit digestive lipases,
which results in increased lipid content in fecal matter. Further, this
will reduce macrophage infiltration into adipocytes, lowering inflam-
matory tone [75].

Dyslipidemia is an important facet of metabolic syndrome. Many
studies have examined the effects of chronic cocoa treatments on LDL
cholesterol, HDL cholesterol and triglycerides [78,79,84,156,170–173].
Cocoa may be able to beneficially modulate cholesterol and triglyc-
eride levels in metabolically unhealthy individuals [174]. Cocoa
flavanolsmay improveblood glucose control indirectly, bymodulating
lipid digestion and thus reducing hyperlipidemia and its subsequent
deleterious effects on glucose homeostasis. PCs are potent lipase
inhibitors in vitro [36,175]; they also reduce acute postprandial [175]
and fasting plasma triglycerides [63] and increase fecal lipid excretion
[75] in animals and humans. It has been well established that cocoa
and PCs reduce blood triglycerides and lipid accumulation in viscera,
liver and β-cells in animal models [18,75,158,176,177]. Prevention of
lipid accumulation by cocoa PCs may indirectly improve glucose
homeostasis by preservingmetabolic flexibility and insulin sensitivity
in skeletal muscle [178,179], insulin sensitivity in liver [180,181] and
β-cell viability and function [71,150,177,182]. Clinical studies have
shown that inhibition of lipid absorption and associated hyperlipid-
emia and fat accumulation can improve blood glucose control and
insulin sensitivity in humans [183–185]. Cocoa flavanols have not
been evaluated for inhibition of lipid digestion and absorption in
humans.

Finally, cocoa flavanols have been associated with an increase in
lipolysis, fatty acid oxidation and energy expenditure in animal
models [65,69,70,186–189]. Other suggested mechanisms involve the
endocannabinoid system [146], mitochondrial function [190], anti-
carcinogenic properties [155] and modulating immune function [24].



Fig. 5. One mechanism by which a chronic cocoa supplement may improve glucose homeostasis. Cocoa may improve gut barrier function, leading to a reduction in serum endotoxin,
minimizing inflammation, allowing for normalized glucose control.
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In summary, there are many possible primary and intermediate
mechanisms that are outside the scope of this review, but they are still
important to consider when evaluating the effects of cocoa on
metabolic syndrome. It is likely that cocoa and cocoa flavanols exert
pleiotropic effects on metabolism, which likely act synergistically to
prevent or slowprediabetes and T2DM.However, it remains unknown
which mechanisms and pathways are affected directly by cocoa and
which are modulated indirectly as downstream effects of improve-
ments in the primary targets. In some cases, definitive identification of
the primary molecular mechanism of action may be unnecessary.
However, when moving forward to expensive, time-consuming
clinical trials, knowledge of the most upstream targets will facilitate
improved study design, identification of appropriate biomarkers to
evaluate efficacy and, perhaps most importantly, define the biological
contexts in which cocoa flavanols are likely to be effective.
5. Implications of potential mechanisms

As detailed above, cocoa flavanols appear to possess important
antidiabetic activities. In some cases, these activities are similar to
current pharmaceuticals for control of diabetes and obesity [191], such
as acarbose [192,193], gliptins [126,194,195] and orlistat [183–185].
Increased intake of cocoa flavanols may represent a viable dietary
strategy to obtain the glucose-lowering benefits of these pharmaceu-
ticals without the deleterious side effects (oily stool, diarrhea, gas,
bloating, etc.). However, the clinical utility of cocoa in preventing and
ameliorating prediabetes and/or T2DM by exploiting these mecha-
nisms remains largely unknown.
5.1. Importance of understanding mechanism

Strategies that maximize the efficacy of flavanol interventions are
desirable. However, as discussed above, the primarymechanism(s) by
which flavanols act in vivo remain poorly understood. This mechanis-
tic uncertainty limits our ability to focus on modulating specific
mechanistic targets. Furthermore, the impact of flavanols on various
substates of diabetes (prediabetes, early T2DM with hyperinsuline-
mia, late T2DM with β-cell exhaustion/failure, etc.) remains poorly
understood. This precludes targeting of specific substates (such as
impaired fasting glucose versus impaired glucose tolerance, which
typically present exclusively of each other in prediabetes [196–198]
and primarily represent derangements of gluconeogenesis versus
insulin sensitivity, respectively) as opposed to a “shotgun” approach
that does not require mechanistic knowledge and does not finely
target specific physiological conditions.

Similarly, understanding the location of activity is key for targeting.
If the primary mechanism is located in the gut, strategies to maximize
gut levels and activity should enhance efficacy. Conversely, if the
primary molecular mechanism is located in peripheral tissues,
strategies to enhance flavanol bioavailability would be most likely to
improve efficacy [199–201]. Furthermore, an understanding of
whether native flavanols, or their microbial metabolites, are primarily
responsible for the observed benefits would be useful to design
strategies to increase native flavanol bioavailability or increase
microbial metabolism of flavanols.

Lack of definitive mechanistic data limits current flavanol inter-
vention strategies to “shot in the dark” approaches within a specific
target dose, which may result in suboptimal efficacy and attempted
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use in populations that may not benefit from cocoa interventions.
Therefore, clarification of the mechanisms involved is essential to
improve clinical utility of cocoa flavanols.

5.2. Implications of bioavailability on mechanism

Some of the proposed mechanisms suggest that cocoa flavanols
may improve glucose control at least in part by acting locally in the gut
lumen. This is critical due to the fact that flavanols, particularly the PCs
(i.e., the larger flavanols), have poor systemic bioavailability [29–
31,202–205]. Reported oral bioavailability of flavanols is generally
b10% for monomeric catechins [206,207] (when Phase-II metabolites
are accounted for, bioavailability of monomers from catechins has
been reported as high as 55%), much lower for small PCs (dimers-,
trimers) and essentially 0% for larger PCs [29,39,207,208].

Poor bioavailability likely limits flavanol activities in peripheral
tissues compared to the gut. Following cocoa consumption, concen-
trations of major flavanols (epicatechin, procyanidin B2, etc.) in
circulation are typically 0.010–6.0 μM [37,43–45]. By comparison,
consuming a 5-g serving of cocoa powder (~6-mg catechin, 25-mg
epicatechin and 235-mg PCs) would result in gut concentrations of
~10-μM catechin, 43-μM epicatechin and 67-μM PCs (assuming
intermediate size PCs and gastrointestinal fluid volume of 2 L) [209].
Therefore, cocoa flavanols are typically much more concentrated in
the gut compared to peripheral tissues. The hypothesis of gut activity
is strengthened by an intriguing study demonstrating that orally
administered flavanols improved glucose tolerance in animals when
glucose was administered orally, but not when glucose was admin-
istered by intraperitoneal injection [120]. Despite this evidence, the
gut-located activities (inhibition of digestive enzymes, improved
barrier to endotoxin, stimulation of GLP-1 secretion, etc.) of cocoa
flavanols have not yet been rigorously tested nor targeted in vivo for
inhibition or improvement of metabolic syndrome. Mechanistic
animal and human clinical experiments are needed in order to
demonstrate the ability of cocoa flavanols to act specifically by gut-
mediated mechanisms. Demonstration that cocoa flavanols act
through gut mechanisms is needed so that delivery and dosing
strategies may be designed to specifically target these mechanism(s)
and optimize intervention efficacy, as well as identify behaviors and
nutrition profiles that optimize the efficacy of these digestive effects.

5.3. Implications of mechanism on dose distribution

Acute human studies demonstrate that consuming flavanolswith a
meal can lower postprandial hyperglycemia [210–214]. Thus, co-
consuming flavanols with meals may be a viable strategy for
improving both acute and long-term blood glucose control, as well
as reducing dyslipidemia. However, several of the proposed activities
of cocoa flavanols (inhibiting carbohydrate/lipid digestion and
improving the “incretin effect”) require the presence of flavanols in
the lumenof the gut concurrentwithmacronutrients duringdigestion,
similar to acarbose or orlistat. If co-consumption of flavanols with
meals significantly improves acute glucose control and blood lipid
profiles, it follows that chronic flavanol co-consumption with meals
should maximize their activities compared to consumption at other
times. Conversely, if acute effects require co-consumptionwithmeals,
consuming flavanols between meals may reduce their potential
benefits; cocoa flavanols cannot inhibit macronutrient digestion if
the two are not present at the required concentrations in the gut
lumen simultaneously. However, it remains largely unknownwhether
consuming flavanols with meals (vs. other patterns) maximizes their
efficacy or if dose distribution does not affect efficacy.

Most animal studies [68,69,158,215], including those in our lab
[17,91], administer flavanols incorporated into the diet (thus,
flavanols and macronutrients are always co-consumed). Human
interventions are not necessarily designed to recapitulate animal
dosing patterns; rather, emphasis is simply placed on translating the
effective dose from animals to humans. This may account for partial
loss of efficacy during translational research. In at least four out of the
reported effective chronic flavanol clinical interventions, dosing was
synchronized with meals or distributed widely throughout the day
[78–82,216,217]. Conversely, only one of the reported ineffective
interventions was synchronized with a meal [84,86,218,219]. The
preliminary evidence therefore suggests that dosing strategies may
matter in terms of flavanol efficacy. Consuming flavanols with meals,
or evenly throughout the day, appears tomaximize efficacy. Variations
in designmake it impossible to definitively assess the impact of dosing
strategy from published studies [78–82,84,86,216–219]. However, to
our knowledge, the impact of different flavanol dosing strategies on
biomarkers of metabolic syndrome has not been rigorously tested.
Studies are needed which examine the impact of dose distribution on
efficacy.

5.4. Relationship between mechanism and effective dose

Animal and clinical studies alike have used drastically different
doses of cocoa treatments, including doses that are likely not
translatable to humans [17,71,85,86,190,220]. Different mechanisms
likely have distinct effective doses; since the mechanisms behind the
beneficial health outcomes associated with cocoa have yet to be
determined, it may be difficult to pinpoint an ideal dose before the
mechanisms are defined. However, the “more is better” concept often
used for phytochemical is inherently flawed, as many phytochemicals
exhibit U-shaped dose response curves where lower doses are more
effective, likely due to lower levels of detoxification pathway
expression and different binding efficiencies for receptors and enzyme
active sites and others [221,222] (this is known as “hormesis”)
[223,224]. Higher doses can result in reduced efficacy compared to
lower doses, no effect or even toxicity. The use of high doses can
therefore mask potential efficacy of mechanisms that may be relevant
to humans at translatable doses. Furthermore, nontranslatable doses
maymodulatemechanisms that are not impacted at lower doses, thus
suggesting potential mechanisms of action that are unlikely to be
modulated once translated to human dosing. Therefore, future studies
should ideally be designed to examine the effects of lower, translatable
doses of cocoa flavanols.

5.5. Relationship between flavanol structure and mechanism

Cocoa flavanols exist in a broad range of polymerization states.
Different flavanols likely act through distinct mechanisms due to
differences in structure as well as bioavailability. Animal studies have
generally focused on whole cocoa or chocolate [71,74–76,215,225–
227], extracts [62,66–69,228,229] and flavanol monomers (catechins)
[65,190,214,230]. Little data exist on the bioactivities of larger
flavanols (PCs), partly due to difficulty of isolation, complexity of
analytical characterization and lack of commercially available stan-
dards. However, recent data have suggested that the PCs may possess
distinct (and in some cases, enhanced) activities for improvement of
glucose homeostasis compared to flavanol monomers. Gu et al. [102]
demonstrated that flavanol DP was inversely correlated to the IC50 of
digestive enzyme inhibition (larger cocoa flavanols were more
effective inhibitors). Yamashita et al. [231] showed that a fraction
composed of smaller cocoa flavanols (DP≤3) more effectively
stimulated glucose uptake, GLUT4 translocation and AMPK phosphor-
ylation in skeletal muscle cells than a fraction composed of larger PCs
(DP≥4). However, in the same study, the larger flavanols were more
effective α-glucosidase inhibitors than the smaller flavanols. Yama-
shita et al. [64] further demonstrated that cinnamtannin A2 (a DP 4
cocoa flavanol) increased circulating GLP-1, insulin levels and
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activation of the insulin-signaling pathway ins skeletalmuscle inmice,
whereas cocoa flavanols with DP 1-3 had little to no effect.
Subsequently, we demonstrated that oligomeric cocoa flavanols
more effectively inhibited the onset of diet-induced obesity and
glucose intolerance compared to a crude cocoa polyphenol extract,
monomeric cocoa flavanols and polymeric cocoa flavanols [17]. This
finding was intriguing, as the bioavailability of oligomeric flavanols is
lower than that of monomeric flavanols (see above). Thus, these
enhanced activities may be due to mechanisms that do not require
bioavailability.

These data suggest that cocoa flavanols of different DP may possess
distinct activities. As cocoa contains a wide distribution of flavanol DPs,
this emphasizes that the observedbioactivities are likely due to a variety
of compounds acting through various mechanisms synergistically.
Understanding the relationship between flavanol DP and bioactivities
will facilitate an understanding of how cocoa composition impacts
potential health benefits. Despite the cost and complexity associated
with preparing or obtaining these larger flavanols, the influence of DP
on flavanol bioactivity warrants further investigation. This is another
emerging area with the potential to yield highly valuable, novel data to
clarify the role of cocoa flavanols in metabolic syndrome. Efforts to
isolate, purify, characterize and make these compounds available to
other diabetes researchers will be central to this effort.

6. Conclusions

In conclusion, cocoa flavanols appear to alleviate metabolic
syndrome, and specifically, derangements in glucose homeostasis,
by several intermediate mechanisms. First, cocoa may reduce glucose
excursion after a meal by inhibiting digestive enzymes, inhibiting
glucose transporters and promoting an incretin response. These
outcomes are most likely to be observed after an acute dose of
cocoa, and since these mechanisms predominantly occur in the gut,
the poor bioavailability of flavanols is not a limiting factor for these
activities.

Second, chronic cocoa consumptionmay lead to beneficial changes
in the gut microbiota, resulting in improved gut barrier function,
reduced circulating endotoxin and uninhibited insulin signaling
mechanisms. PCs are stable through gastric and intestinal transit so
they will reach the colon intact. Again, bioavailability is not a limiting
factor.

Third, cocoa flavanols can act in peripheral tissues (improved β-
cell function and insulin sensitivity in skeletal muscle, etc.). These
effects are limited by the poor bioavailability of many cocoa flavanols.
Demonstration of the activities of flavanol microbial metabolites may
be the missing link between oral flavanol consumption and activity in
peripheral tissues.

It is likely that the potential benefits of cocoa consumption are
mediated by all of these mechanisms to some extent. However, it
remains unknown which, if any, of these mechanisms are primarily
responsible for observed effects in vivo. Furthermore, the primary
molecular mechanisms by which these intermediate mechanisms
occur are generally unknown. Therefore, additional in vivomechanis-
tic studies are needed in order to isolate and assess individual primary
and intermediate mechanisms of action.

There are many elements of this puzzle that are still unknown.
First, it is unknown what acute effects cocoa may have on
carbohydrate digestion in a population with existing prediabetes or
T2DM. So far, to our knowledge, the only acute studies (in both animal
and clinical models) have examined healthy subjects or animals.
Individuals with metabolic disorders will benefit greatly from a
supplement to control glucose excursions, but it is unclear to what
extent cocoa can be helpful in this population. Second, little is known
regarding the impact of cocoa on human subjects with differing
substates along the continuum of diabetes. In addition, studies
examining the impacts of cocoa and its mechanisms of action when
administered in conjunction with common diabetes medications in
subjects with T2DM (which is likely to occur in real-world clinical
settings) are needed. Third, cocoa is metabolized in the colon by the
microbiota intomanymetabolites and it is unknownwhat functions, if
any, that these metabolites have on human health. Third, it is
hypothesized that Akkermansia has beneficial effects on gut barrier
function, but it is still unknown if cocoa canmodulate this species, but
this may be a worthwhile study to pursue. Lastly, it is unknown what
doses of cocoa (for either acute or chronic outcomes) elicit the most
beneficial outcomes related to metabolic syndrome.

Therefore, highly mechanistic clinical and animal studies are
needed, in addition to the largely descriptive studies done thus far.
Based on the proposed mechanisms, acute and chronic cocoa studies
should be designed to assess mechanism. Acute studies should focus
on the impact of cocoa consumption on starch, disaccharide and
triglyceride digestion (to assess the impact of cocoa on α-amylase, α-
glucosidase and lipase activity, respectively) followingmixedmeals as
well as individual macronutrient doses and postprandial hormone
secretion (GLP-1, GIP, insulin, etc.) following mixed meals as well as
simple sugar and complex carbohydrate doses.

Chronic studies should focus on gut permeability, fasting and
postprandial circulating endotoxin levels, fasting and postprandial
circulating hormone levels (GLP-1, GIP, insulin, etc.), skeletal muscle
metabolism, effects of gut microbiota/metabolites and dose synchro-
nizationwithmeals. Such studieswill greatly improve the depth of our
understanding of the impacts of cocoa consumption on human
physiology. In order to probe the impact of cocoa flavanols on incretin
pathways (secretion, action and degradation), various techniques can
be employed, including incretin or incretin receptor knockoutmodels,
DPP-4 knockout or overexpression models, incretin receptor antago-
nists and others. To explore the impact of dose synchronization with
meals, various patterns of dosing can be employed in both animals and
human subjects (single daily flavanol dose with a meal, dose single
daily dose in the fasted state,multiple daily doseswithmeals,multiple
daily doses in betweenmeals, etc.). Finally, to determine the impact of
gutmicrobiota (and flavanolmetabolites produced by gutmicrobiota)
in mediating the effects of flavanol consumption, studies can be
performed in germ-free, gnotobiotic or antibiotic-treated animals and
compared with results of normal, fully-colonized animals. This will
facilitate identification of effects dependent upon the presence of gut
microbiota.

In addition, use of advanced physiology assays in chronic human
studies is needed to delineate the precise metabolic effects of chronic
cocoa exposure in study subjects. Specifically, the insulin-augmented
intravenous glucose tolerance test (IVGTT) could be performed to
simultaneously assess glucose effectiveness (ability of the body to
stimulate glucose uptake and suppress endogenous glucose produc-
tion due to the presence of glucose), insulin response to glucose and
insulin sensitivity. Alternatively, the hyperglycemic glucose clamp or
hyperinsulinemic–euglycemic clamp techniques could be employed.
Such studies are needed in order to go beyond fasting glucose/insulin
levels, postprandial oral glucose tolerance and the homeostatic model
assessment (HOMA) protocols commonly used [232]. In addition,
skeletal muscle biopsies followed by metabolism and energetics
assays could reveal much information regarding the impact of cocoa
on substrate metabolism, metabolic flexibility and muscle function
(and improvement on deranged metabolic states observed during
metabolic syndrome) [233–240]. While these assays are more
complex, burdensome to subjects and expensive, they are needed to
advance our knowledge of the mechanisms by which cocoa exerts it
effects. Perhaps most importantly, additional long-term (1 month or
longer) intervention trials are needed in individuals with prediabetes
or diabetes in order to determine the clinical utility of cocoa flavanols
for successful prevention or amelioration of these diseases.
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In future studies, it is critical that all trials publish a full
characterization of the cocoa utilized in the study, due to the impact
of flavanols structure on potential mechanisms of action. Clinical
studies should report the food matrix used in the treatment, and
animal studies should report food intake. Finally, utilizing acute and
chronic study designs will be important to characterize the mecha-
nisms of action of cocoa flavanols.

Insights into the mechanisms by which cocoa flavanols act and the
substates of diabetes modulated by cocoa flavanols will refine the
ability of clinicians to effectively use cocoa, in combination with diet,
exercise and medications, to effectively combat prediabetes and
T2DM.
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